
Quantum Dynamics of Hydride Transfer in Enzyme Catalysis
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Abstract: One of the strongest experimental indications of hydrogen tunneling in biology has been the elevated
Swain-Schaad exponent for the secondary kinetic isotope effect in the hydride-transfer step catalyzed by
liver alcohol dehydrogenase. This process has been simulated using canonical variational transition-state theory
for overbarrier dynamics and optimized multidimensional paths for tunneling. Semiclassical quantum effects
on the dynamics are included on a 21-atom substrate-enzyme-coenzyme primary zone embedded in the
potential of a substrate-enzyme-coenzyme-solvent secondary zone. The potential energy surface is calculated
by treating 54 atoms by quantum mechanical electronic structure methods and 5506 protein, coenzyme, and
solvent atoms by molecular mechanical force fields. We find an elevated Swain-Schaad exponent for the
secondary kinetic isotope effect and generally good agreement with other experimental observables. Quantum
mechanical tunneling is calculated to account for∼60% of the reactive flux, confirming the dominance of
tunneling that was inferred from the Swain-Schaad exponent. The calculations provide a detailed picture of
the origin of the kinetic isotope effect and the nature of the tunneling process.

Introduction

Over the last several years, experimental studies of kinetic
isotope effects have led to increased appreciation of the role of
quantum mechanical tunneling effects in enzyme kinetics.1-4

The strongest experimental evidence for hydrogen tunneling in
biology has been based primarily on the Swain-Schaad
exponent for secondary kinetic isotope effects in the hydride-
transfer step in liver alcohol dehydrogenase (LADH) catalysis
(the Swain-Schaad exponent, defined below, relates the D/T
rate constant to the H/T rate constant). Although the importance
of quantum mechanical tunneling and zero point energy effects
in small-molecule kinetics is widely appreciated,5 and models
of quantum effects in enzyme kinetics have been advanced for
a long time,6 most simulations7 of protein dynamics have been
restricted to classical molecular dynamics.8,9 It is of great interest
to gain insights into the role of quantum mechanical tunneling
in biological systems. Two questions are directly relevant: (1)
Can kinetic isotope effects be accurately predicted for enzymatic
processes? (2) To what extent does quantum mechanical
tunneling contribute to the rate enhancement in LADH? In this
report, we use a combined quantum mechanical and molecular

mechanical (QM/MM) potential energy function in semiclassical
quantum dynamics simulations and demonstrate how this
method can be used for the computation of kinetic isotope effects
and Swain-Schaad exponents in enzymatic reactions. We find
an elevated Swain-Schaad exponent for the secondary kinetic
isotope effect in LADH catalysis. The quantitative results
provide a detailed picture of the nature of the tunneling process.

For large systems, the most promising methods for including
quantum mechanical nuclear-motion effects in dynamical pro-
cesses are based on semiclassical theory in which the quantum
effects are approximated by the leading corrections to the
classical limit, as in the well-known Wilson-Sommefeld-
Einstein rule for quantization of bound motions and the
Wentzel-Kramers-Brillouin (WKB) approximation for un-
bound wave functions. The classical-limit quantum mechanical
result for a tunneling probability is exp(-2θ/p), whereθ is the
imaginary action integral along an analytically continued
trajectory that penetrates the barrier to rearrangement.10 The least
action variational principle for tunneling finds the highest-
probability tunneling path for each total energy as the path that
minimizes the exponential decay by the best compromise of
low effective mass, low barrier, and short path for the motion
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that takes the system through the classically forbidden region
of coordinates.11 A key feature of such motions is that they
involve corner cutting as compared to the motion along a curved
minimum-energy path through the multidimensional coordinate
space.12-14 A practical approximation called optimized multi-
dimensional tunneling (OMT) approximates the optimum tun-
neling path by variationally comparing tunneling probabilities
computed from action integrals appropriate in the limits of small
reaction-path curvature (with mild corner cutting) and large
reaction-path curvature (in which a straight-line motion leads
to the shortest path with the maximum corner cutting).15 The
OMT approximation has been validated by extensive comparison
to accurate quantal dynamics for small systems,16 butsunlike
converged quantum dynamics calculationssit remains doable
for large systems.

To calculate an actual reaction rate also requires a method
for estimating overbarrier contributions, and both the overbarrier
and tunneling calculations require a Born-Oppenheimer po-
tential energy surface (PES) whose gradient is the force field.
In the present study, overbarrier processes are calculated by
quantized canonical variational theory (CVT),17 and the final
rate constant calculated here (denoted CVT/OMT) is equal to
the CVT one (which corresponds to classical reaction-coordinate
motion) times the OMT transmission coefficientκ (which
accounts for the competition between tunneling and overbarrier
processes by incorporating the quantal character of reaction-
coordinate motion). Note that the full quantum mechanical
description includes both overbarrier and tunneling processes,
but CVT with κ ) 1 includes only the former. The PES is
calculated by a combined QM/MM approach.18-21 It has recently
been demonstrated that this combination provides a practical
way to include quantum effects in molecular dynamics simula-
tions of enzyme rate constants.22

LADH is a dimeric enzyme that requires nicotinamide adenine

dinucleotide (NAD+) as a coenzyme. Each unit of the dimer
has 374 residues and 2 Zn atoms (one structural and one
catalytic). The present simulation includes the benzyl alcoholate
substrate, the coenzyme, 260 residues, 2 Zn atoms, and 534
water molecules for a total of 5560 atoms. Thus, our calculation
will illustrate that important quantum effects can be included
in reaction dynamics studies even for systems of very large size
and complexity.

Calculations and Results

The potential energy surfaceV, which is independent of
isotopic substitution, has four terms:

The first three terms are based on a partition into a 54-atom
subsystem treated by the quantum mechanical (QM) Austin
model 1 (AM1) with parameters from the literature for C, H,
N, and O,23 S,24 and Zn25 and a 5506-atom subsystem treated
by molecular mechanics with CHARMM-22 parameters for the
protein,26 Zn,27 coenzyme,28 and substrate26 parts of the MM
subsystem and T1P3P parameters29 for the water part of the
MM subsystem. The Lorentz-Berthelot combining rules are
used to derive parameters for interactions between protein and
water atoms. The couplingVQM/MM between the subsystems
includes both electrostatic effects and van der Waals terms.19-21

The QM subsystem includes auxiliary energy terms from four
boundary atoms that are treated by a combination of QM and
MM using the generalized hybrid orbital method.21 The AM1
calculations include 160 valence electrons on the benzyl
alcoholate anion (which is ligated to the catalytic Zn), the
nicotinamide portion of NAD+ up to the 1′ carbon of ribose,
which is a boundary atom, the catalytic Zn, and the ligating
portions of three other Zn ligands, in particular the side chains
of His-67, Cys-46, and Cys-174 up to their C-R atoms, which
are boundary atoms. The MM atoms consist of the structural
Zn, 3849 other protein atoms, and the remaining 54 atoms of
NAD+ and 534 water molecules. The semiempirical valence
bond (SEVB) term contains a Zn-O valence stretching term
and a difference of two extended LEPS equations30 for the three-
body subsystem consisting of transferred H, donor carbonD,
and acceptor carbonA. One extended LEPS equation, prefixed
by a negative sign, is fit to the AM1 calculations, and the other
is fit to ab initio MP231 calculations; then a genetic algorithm
is used for fine adjustments to make the classical free energy
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of activation approximately match experimental32 data. Further
details of the parametrization of the SEVB term are given in
the Computational Section. The SEVB potential adjusts the
shape of the one-dimensional potential of mean force (PMF)
along the reaction coordinate, especially for the overall exoer-
gicity and barrier height, butssince it depends only on four
internuclear distancessit cannot be used for general adjustments
of the coupling of vibrational modes to the reaction coordinate.
Thus, the calculations reported in this paper, which are sensitive
to this coupling, will test the adequacy of the AM1-GHO-
CHARMM22-TIP3P potential (combined with variational tran-
sition-state theory with multidimensional tunneling calculations)
for predicting these detailed aspects of the dynamics.

The dynamics are treated by stochastic boundary conditions.33

A reaction zone of radius 20 Å (centered on the midpoint of a
line from the donor carbonD to the acceptor carbonA) is
treated without constraints. A shell from 20 to 24 Å forms a
buffer zone and is treated by constrained Langevin dynamics.33,34

Residues and solvent molecules beyond 24 Å are omitted.
LADH is a dimer containing 748 residues and 4 Zn atoms. This
treatment includes 239 residues and 2 Zn atoms from one
monomer unit and 21 residues and no Zn from the other plus,
as stated above, 534 water molecules.

We carried out calculations for the present system for six
isotopic combinations, just as in the experiments.1,2 Our notation
is thatkPr

Se is the rate constant for

where Pr and Se are the primary and secondary hydrogen atoms
or their isotopes; Pr denotes H(1°), D(1°), or T(1°), and Se
denotes H(2°), D(2°), or T(2°).

The dynamics calculations involve two stages. In the first
stage, the reaction zone is classical, and there are two substages.
In the first substage, we calculate the PMF (also called the free
energy profile)W(z) as a function of the distinguished coordinate
z defined by

whererHX is the distance between the transferred H and atom
X. The calculation employs umbrella sampling35 and yieldsW(z)
in windows spaced by 0.25 Å. Figure 1 shows the average of
VQM over configurations sampled along the reaction path and
compares it with the PMF for the hydride-transfer reaction. This
energy change is-14 kcal/mol, but the computed PMF, which
includes enzyme-substrate interactions and dynamic fluctua-
tions, shows a nearly ergoneutral reaction. The PMF shows a
free energy of activation of 16 kcal/mol for the hydride-transfer
step of the enzymatic reaction. The corresponding experimental
activation barrier is 15.6 kcal/mol.32

The highest-W window is selected for further sampling in
the second substage. First we compute<rHD> and<rHA> for
this window. Then we carry out a constrained sample with these
two distances harmonically constrained close to their average,
and after 20 ps of equilibration, we randomly select 20
configurations at random,∼2.5 ps apart, for further use in stage
2.

Although the present work takes the hydrogen atom position
as the distinguished coordinate for stage 1, alternative treatments
could be based on a collective solvent coordinate36-39 such as
the one used in the Marcus theory of electron transfer. This
issue is discussed at length in another paper.40 Looking ahead,
we note that the distinguished coordinate is only used in stage
1; the stage 2 reaction coordinate will not involve preselection
of a distinguished coordinate.

In stage 2, the system is divided into a primary zone and a
secondary zone. The primary zone has 21 atoms and consists
of C-CH2O- from the alcoholate, the Zn, and the entire
nicotinamide portion of NAD+; the secondary zone consists of
the rest. For each of the configurations selected in stage 1, we
freeze the secondary zone,41 calculate the minimum energy path
(MEP) of primary zone atoms in mass-weighted coordinates,
and calculate the rate constant by CVT/OMT using the
embedded cluster42 algorithm. In this way, 63 degrees of
freedom are treated by semiclassical quantum dynamics in the
field of a 5539-atom secondary zone. The small-curvature
approximation is selected for the OMT calculations on the basis
of variational calculations for energies from 0 to 2.1 kcal/mol
below the barrier top (large-curvature tunneling calculations are
very sensitive to some of the approximations for even lower
energies, but these contribute negligibly in the present calcula-
tions). The fact that the small-curvature approximations are
variationally preferred to the large-curvature one for this system
may seem surprising since the transfer of a light particle between
two heavy moieties is often associated with large reaction-path
curvature; however, as discussed elsewhere,43 that correlation
is strictly valid only for bimolecular reactions (where the
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the reactive event has been examined recently by Neria and Karplus (Neria,
E.; Karplus, M.Chem. Phys. Lett. 1997, 267, 23. Karplus, M. J. Phys. Chem.
B 2000, 104, 11) in classical mechanical simulations of proton transfer
catalyzed by triose phosphate isomerase. They compared calculations with
frozen and unfrozen baths with an even smaller primary zone than used
here and found that the dynamics of environmental atoms is unimportant
for calculating the transmission coefficient. One expects larger effects on
the free energy of activation and reorganization energy, and the magnitude
of these quantities also affects the quantum effects.
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Figure 1. Free energy profile of entire system compared to internal
energy of the 54-atom subsystem, as functions of the reaction
coordinate.

LADH ‚PhCPrSeO-‚‚‚NAD+ f LADH ‚PhCSeO‚‚‚NADPr

z ) rHD - r HA (2)
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entrance valley is aligned with a vector from the center of mass
of one reagent to the center of mass of the other) whereas the
present system is unimolecular.

The Swain-Schaad exponents44 are

The importance of the exponents is that they were used by
Klinman and co-workers1-3 as an indicator for tunneling. In
particular,R > 3.3 (this upper limit of “normal” behavior is
based on the assumptions44 of transition-state theory, uncoupled
harmonic stretch motions, the same transition-state geometry
for all isotopes, and no tunneling) was considered to be an
indication of an enhanced reaction rate due to tunneling
increasing the rate constant significantly for the lightest mass
combination but much less so for the others.

We carried out calculations for 20 secondary-zone configura-
tions for each of the 6 isotopic combinations appearing in eqs
1 and 2. The kinetic isotope effects (KIEs) and Swain-Schaad
exponents were averaged over all 20 secondary-zone configura-
tions, and the resulting averages and standard deviations are
given in Table 1. For comparison with the final CVT/OMT
results, rate constants were also calculated by conventional
transition-state theory (TST)45 and by CVT with quantized
vibrations but without tunneling. Calculations with a 31-atom
primary zone in which we unfroze the entire benzyl group
(resulting in 93 degrees of freedom treated by semiclassical
quantum dynamics) agree with the values in Table 1 within a
few percent.

The most serious approximation in the present work may be
the neglect of the secondary-zone entropy. By averaging over
secondary-zone structures, we have included the internal energy
effect of secondary-zone fluctuations but not the entropic part.
In a subsequent paper, we will present a third-stage algorithm
for including this effect. The method employed by Hwang and
Warshel (1996, ref 9) includes a more complete treatment of
protein fluctuations but a less complete treatment of quantum
effects.

Table 1 also compares the kinetic isotope effects and
exponents to experiment.2 The experimental numbers are
affected by kinetic complexity due to the fact that, at least for
the wild-type case, the rate is partially limited byproduct
benzaldehyde dissociation. Some idea of the intrinsic values
for the catalytic step is provided by the values for mutants; these

values are given in parentheses; for the mutants, the catalytic
step is fully or more fully rate-determining. The operational
assumption is that the true result for the rate-determining step
in wild-type LADH (which is simulated here) is somewhere in
or near the range of the wild-type and mutant values. The X-ray
structure for one of the mutants (F93W) is virtually superim-
posable on the wild-type structure.

Discussion

The agreement between theory and experiment in Table 1 is
better than one has a right to expect because the experimental
numbers are affected by kinetic complexity and because of the
size of the system and the many interactions contributing to
free energy changes along the reaction path. Nevertheless, the
good agreement is very gratifying and encouraging, and it gives
us confidence in the detailed picture of the tunneling process
provided by the calculations, as discussed next.

For the more detailed analysis that follows, we selected the
most typical secondary-zone configuration (that agrees best with
all the average kinetic isotope effects and Swain-Schaad
exponents), and we will base further discussion on this typical
case (because the component numbers fit together in a less
confusing fashion when one discusses a typical configuration
than when one works with the averagessbut all qualitative
conclusions are unaffected).

We denote the transmission coefficient asκPr
Se for a given

primary (Pr) and secondary (Se) isotopic hydrogen. The
calculations indicate thatκH

H ) 2.34,κT
H ) 2.35, andκH

T ) 2.02.
It is not a round-off error that the “expected” trend,κH

H > κT
H, is

not observed for primary substitution. Similarly, the expected
trend κH

T > κD
T is not observed becauseκD

T ) 2.18. Those
trends are only guaranteed if the effective potential and tunneling
path are isotope independent, but they are not isotope indepen-
dent for multidimensional tunneling. (Multidimensional tunnel-
ing approximations account for the coupling of other modes to
the nominal reaction coordinate both in terms of determining
the optimum tunneling paths and in terms of determining the
effective potentials and reduced masses along those paths; an
introductory explication is available elsewhere.46) Indeed there
are now several theoretical calculations in the literature where
κD > κH for primary substitution in nonenzymatic47 and
enzymatic22 reactions. For the present perprotio reaction, the
dominant tunneling energy is 0.40 kcal/mol below the effective
barrier top. At this energy, the tunneling path starts withrHD )
1.14 Å, rHA ) 1.49 Å; and it terminates atrHD ) 1.31 Å, rHA

) 1.28 Å. Figure 2 shows five structures at critical points along

(44) Swain, C. G.; Stivers, E. C.; Reuwer, J. F.; Schaad, L. J.J. Am.
Chem. Soc. 1958, 80, 5885. Saunders, W. H., Jr.J. Am. Chem. Soc. 1985,
107, 164. Huskey, W. P.J. Phys. Org. Chem.1991, 4, 361.

(45) Eyring, H.J. Chem. Phys. 1935, 3, 107.

(46) Tucker, S. C.; Truhlar, D. G. InNew Theoretical Concepts for
Understanding Organic Reactions; Bertrán, J., Csizmadia, I. G., Eds.; NATO
ASI Series C 267; Kluwer: Dordecht, 1989; pp 291-346.

(47) Truong, T. N.; McCammon, J. A.J. Am. Chem. Soc. 1991, 113,
7504. Storer J. W.; Houk, K. N.J. Am. Chem. Soc. 1993, 115, 10426.
Corchado J. C.; Espinosa-Garcia, J.J. Chem. Phys. 1996, 105, 3160. Villá,
J.; Gonza´lez-Lafont, A.; Lluch, J. M.J. Phys. Chem. 1996, 100, 19389.
Hu, W.-P.; Rossi, I.; Corchado, J. C.; Truhlar, D. G.J. Phys. Chem. A
1997, 101, 6911.

Table 1. Primary and Secondary Kinetic Isotope Effects and Exponents

TSTa CVTa CVT/OMTa exptb

primary kH
H/kT

H 6.1( 0.4 5.9( 0.5 6.2( 0.9 7.1 (7.3-7.8)

kD
D/kT

D 1.73( 0.03 1.72( 0.03 1.8( 0.1 1.9 (1.8-1.9)
secondary kH

H/kH
T 1.09( 0.01 1.10( 0.02 1.29( 0.04 1.33 (1.31-1.32)

kD
D/kD

T 1.03( 0.00c 1.03( 0.01 1.06( 0.01 1.07 (1.03-1.05)
exponentd Rprim 3.30( 0.01 3.25( 0.06 3.2( 0.2 3.1 (3.3)

Rsec 3.3( 0.2 3.4( 0.4 4.4( 0.3 4.1 (6.1-8.5)

a All calculations for wild-type at 300 K.b Reference 2; wild-type value is shown first followed by values for mutants in parentheses.c 1.027(
0.003.d Computed from unrounded kinetic isotope effects.

Rprim )
ln(kH

H/kT
H)

ln(kD
D/kT

D)
(3)

Rsec)
ln(kH

H/kH
T)

ln(kD
D/kD

T)
(4)
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the reaction path, and this provides a moving picture of the
tunneling process and shows that heavy atom motions are
smaller than the hydride motion, especially during the tunneling
event. Rehybridizations of the benzylic and NAD C-4 carbon
atoms accompanying the hydride transfer are clearly seen in
Figure 2. These coupled dynamic motions that make up the
reaction coordinate are depicted in Figure 3, which is a graphical
representation of the imaginary-frequency normal mode. This
mode shows predominant motion of the donor and acceptor

atoms, the transferred H along the axis connecting them, and
the coupled bending motions of secondary hydrogen atoms. The
calculated reactive flux suggests that at least 57% of the reaction
goes by tunneling.

Table 1 shows that the magnitudes of the primary KIEs are
well accounted for by conventional transition-state theory. It is
interesting to compare the full calculations to the simplest model,
according to which the KIE is due to the decrease along the
reaction path of a single frequency associated with the broken
bond. ForkH

H, the frequency of the mode that evolves from the
breaking C-H bond stretch to the quasisymmetric combination
of the breaking and forming C-H bond stretches decreases from
2895 cm-1 at reactants to 1913 cm-1 at the saddle point, whereas
the corresponding frequencies forkT

H are 1762 and 1721 cm-1,
respectively. The zero point energy of this mode would thus
account for a KIE of 9.7, which must be partially compensated
by other changes, since the full TST model yields 6.0. The one-
mode, conventional-TST model for the secondary KIE yields
1.08 (based on frequencies of 1873 and 1138 cm-1 for kH

H and
1168 and 1138 cm-1 for kH

T), which is qualitatively correct.
The quantum mechanical tunneling effect is clearly revealed

by the computed secondary KIE in Table 1. Without tunneling,
the predicted secondarykH

H/kT
H KIE at the CVT level of theory

is 1.10, which is much smaller than the experimental value.
Good agreement with experiment is obtained only when
tunneling corrections are included in the theory. Table 1 also
shows that the exhalted Swain-Schaad exponent for the
secondary kinetic isotope effect results entirely from tunneling,
which (as is easily calculated fromκH

H and κT
H given above)

increases the H/T secondary KIE by 16%.
One advantage of the semiclassical method used here is that

we can dissect the origin of the exhaltation of the exponent in
more detail. The imaginary frequencies at the saddle point for
kH

H and kH
T are 1046i and 1002i cm-1. These values are

Figure 2. Five snapshots of the primary zone and the attached C of ribose. The top row shows reactant, transition state, and product. The bottom
row shows the starting and ending termini of the dominant tunneling path. Thus, the time sequence of the “movie” is upper left (reactant), lower
left (s ) -0.19 amu1/2 Å), center (s ) -0.03 amu1/2 Å), lower right (s ) 0.07 amu1/2 Å), upper right (product).

Figure 3. Reaction-coordinate normal mode at the transition state.
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insufficient to calculateκ quantitatively because they quantify
the width of the barrier only near its top, whereasκH

H is
dominated by tunneling at energies 0.4 kcal/mol below the top,
where the barrier is much wider than its parabolic approxima-
tion. In particular, the vibrationally adiabatic ground-state
potential energy barrier (which includes46,48-51 the changes in
zero point energies of modes transverse to the reaction
coordinate) forkH

H is 0.26 amu1/2 Å wide and that forkH
T is 0.28

amu1/2 Å wide as compared to 0.19 and 0.20 for the parabolic
approximations. The barrier is primarily widened on the reactant
side of the barrier, as shown in Figure 4. In this region, the
reaction path calculations employing the true vibrationally
adiabatic potential for each isotopic case but assuming that the
tunneling path is along the MEP48 (which would be true for
zero curvature of the MEP) yieldκH

H ) 1.61 andκH
T ) 1.50, an

8% effect. The other 8% comes from reaction path curvature,
which is larger forkH

H than forkH
T in the region of the dominant

tunneling paths, as is also shown in Figure 4. For example, the
reaction path curvature at the critical location 0.16 amu1/2 Å
before the barrier is 1.7 times larger forkH

H than forkH
T. Thus,

the same tunneling models that have been successfully validated
for small-molecule reactions14-16 predict a secondary kinetic
isotope effect in good agreement with experiment for LADH
with no new assumptions. To compare precisely with experiment
requires consideringκD

D andκD
T as well, for which we calculate

2.23 and 2.18, respectively. The fact thatκD
T > κH

T has a large
quantitative effect on the Swain-Schaad exponent, but it is
intrinsically a multidimensional effect. We conclude that the
multidimensional aspect of tunneling is paramount for quantita-
tive modeling of these KIEs.

The most thorough previous attempt to explain the detailed
kinetic isotope effects in this system is provided by the work
of Rucker and Klinman.52 They assumed that the transition-
state force constants can be interpolated from reactant and

product force constants and obtained best-fit constants by using
transition-state theory with a parabolic one-dimensional tun-
neling model. To satisfactorily reproduce thekH

H/kH
T secondary

kinetic isotope effects, they required a model in which the effect
computed without tunneling is very small (1.01). As a result,
this kinetic isotope effect was interpreted as arising almost
entirely from one-dimensional tunneling along a coupled-motion
reaction coordinate, and this resulted in the secondary kinetic
isotope effects exhibiting a normal (nonexalted) Swain-Schaad
exponent. The present treatment, by including nonparabolic
multidimensional tunneling, indicates that the root problem in
the treatment of ref 52 is the overestimation of the tunneling
by the parabolic one-dimensional tunneling approximation. The
present treatment predicts less tunneling, shows that thekH

H/kH
T

secondary kinetic isotope effect is nonnegligible (1.10) even in
the absence of tunneling, and yields an exalted Swain-Schaad
exponent in qualitative agreement with experiment. In other
words, the present treatment, for the first time, is able to
reproduce bothkH

H/kH
T andkH

D/kH
T. These kinetic Isotope effects

are not reproduced when we neglect tunneling, and thus our
calculations confirm the essential correctness of the contention
of Klinman and co-workers1-3 that the elevated Swain-Schaad
exponent for secondary kinetic isotope effects in the hydride-
transfer step of alcohol dehydrogenases is experimental evidence
for the importance of hydrogen tunneling in enzyme catalysis.

Whence the exaltation? The present study leads to a simple
picture of the critical portion of the tunneling process that is
responsible for exhaltation of the secondary H/T Swain-Schaad
exponent. At the start of the reactive event, theA andD atoms
move closer. Then theD-H bond begins to break. At this point
there is significantly more tunneling when the secondary H is
not replaced by T, about half of which is due to a narrower
barrier attributable to secondary hydrogen participation in the
minimum energy path and about half of which is due to greater
opportunities for corner-cutting tunneling because the reaction
path is more curved in isoinertial coordinates.

Computational Section

The only parameters specifically optimized for this study are those
in VSEVB. In the present work, the SEVB term is itself a sum of three
terms

where k and ro are parameters andVL
(i) is an extended London-

Eyring-Polanyi-Sato (LEPS) three-body potential energy function30

involving the transferred H- atom (H), the donor carbon (D) of the
alcohol, which is the methylene carbon, and the acceptor carbon (A)
of NAD+, which is C(4). The two extended LEPS functions have
different parameters, and they each depend on the three interatomic
distancesrHD, rHA, andrAD. The difference of LEPS terms for a three-
body subsystem is in the spirit of an IMOMO improvement of the
subsystem.53

Without VSEVB, the GHO-AM1/CHARMM-22 potential function
exhibits two qualitative deficiencies: (1) In the product ternary complex,
the bond between the catalytic Zn and the aldehyde oxygen is too weak
to be stable, whereas an X-ray structure54 of an LADH/NADH/N-
cyclohexylformamide ternary complex (which is presumed to mimic
the ternary aldehyde complex) shows a 2.3-Å Zn-O distance, and
strong interaction of the carbonyl group of Zn is confirmed55 by a
Raman experiment. (Ab initio Hartree-Fock theory also overestimates

(48) Truhlar, D. G.; Kuppermann, A.J. Am. Chem. Soc. 1971, 93, 1840.
(49) Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A. W.J.

Phys. Chem. 1980, 84, 1730.
(50) Truhlar, D. G.; Isaacson, A. D.; Skodje, R. T.; Garrett, B. C.J.

Phys. Chem. 1982, 86, 2252.
(51) Kreevoy, M. M.; Truhlar, D. G. InInVestigation of Rates and

Mechanisms of Reactions, 4th ed.; Bernasconi, C., Ed.; Techniques of
Chemistry Series Vol. 6; Wiley: New York, 1986; Part I, pp 13-95.

(52) Rucker, J.; Klinman, J. P.J. Am. Chem. Soc.1999, 121, 1997.

(53) Humbel, S.; Sieber, S.; Morokuma, K.J. Chem. Phys.1996, 16,
1959. Coitiño, E. L.; Truhlar, D. G.; Morokuma, K.Chem. Phys. Lett.1996,
259, 159.

(54) Ramaswamy, S.; Scholze, M.; Plapp, B. V.Biochemistry1997, 36,
3522.

Figure 4. Effective potential for tunneling (scale at left), parabolic
approximation to the effective potential based on the saddle point
imaginary frequency (scale at left), and curvature of the MEP (scale at
right), all as functions of distances along the MEP. The effective
potentials and parabolic approximations are all normalized to zero at
their highest point to facilitate comparison. Results are shown for the
kH

H (solid curves) andkH
T processes (dashed curves).

VSEVB ) 1
2
k(rO-Zn - ro)

2 - VL
(1) + VL

(2) (5)
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Zn-O distances for aldehyde coordination.) (2) The overall free energy
change of the reaction is calculated to be-20 kcal/mol, rather than
+1.

The first term inVSEVB was added to correct the first deficiency.
We setk ) 40 kcal mol-1 Å-2 and ro ) 2.29 Å, which reduces the
Zn-O distance to 2.38-2.39 Å for typical configurations.

The next two terms ofVSEVB correct the overall exoergicity of the
potential energy function because the QM/MM method that we are
using is not accurate enough to yield the correct energy of reaction.
Both of these terms have the form of extended London-Eyring-
Polanyi-Sato three-body potentials,30 which are functions of the
interatomic distancesrHD, rHA, and rAD that are involved in bond
breaking and bond making. In particular

where the Coulomb integral between atoms X and Y is

and the exchange integral between atoms X and Y is

The functionsV- and V+ are Morse and anti-Morse curves given
respectively by

and

whereDXY, âXY, and re,XY are Morse parameters andZXY is a Sato
parameter. Thus, there are four parameters per diatomic pair inVL

(1)

and the same number inVL
(2) for a total of 24 parameters.

In the general case, all 24 parameters could be adjusted in any fashion
that is useful to improve the potential energy surface; in the present
paper though, we constrained most of them by calculations on model
systems. First, we carried out AM1, ab initio, and density functional
calculations on the following model reaction:

where NMN+ denotesN1- methyl nicotinamide cation, and Ph denotes
phenyl. Table 2 gives the zero-point-exclusive energy of reaction∆E
at the AM1,23 MP2,31 and B3LYP56 levels of electronic structure theory,
where the latter two calculations employ the 6-31+G* 57 basis set. This
table clearly shows that the AM1 method overestimates the exoergicity
in the gas phase by an amount comparable to the error in the enzyme
simulation. We concluded that this is the main reason the GHO-AM1/

CHARMM22 calculations gave∆G ) -20 kcal/mol, whereas the
experimental result is∆G ) + 1 kcal/mol, Thus, the semiempirical
valence bond correction term is used primarily to make up for the
deficiency of AM1.

As a starting point for correcting the potential energy surface, we
assume that the correction in the enzyme is the same as the difference
between the AM1 and MP2 calculations for model reaction R1. Thus,
the initial set of parameters forVL

(1) is taken from the AM1 calcula-
tions on the model reaction, and the initial parameters forVL

(2) are
taken from the MP2 calculations on the model reaction. In particular,
V((rHA) represents NMNHf NMH+ + H- and V((rHD) represents
PhCH2O- f PhCHO+ H-. These parameters are given in Table 3.
The values ofDAD, re,AD, andâAD as well as all the Sato parameters
were taken as adjustable parameters and are adjusted by a genetic
algorithm58 to give the minimum value for an unfitness function
designed to give reasonable values for the barrier height and endoer-
gicity. We also increasedâHA by 0.2 Å to fine-tune the energy contours
in the reactant valley of the potential energy surface, and we increased
all the DHA and DHD values by 10% to give a better energy profile
along the reaction path. The final values of the parameters adjusted in
this process are given in Table 4.
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Table 2. Energetics of Reaction R1

level ∆E (kcal/mol)

AM1 -146.9
MP2/6-31+G* -128.0
B3LYP/6-31G*//MP2/6-31+G* -128.6

Table 3. Morse Parameters Fit to Calculations on Model Reaction

(1) AM1 (2) MP2

HA HD HA HD

DXY (kcal/mol) 245.25a 98.3a 220.20a 92.20a

re,XY (Å) 1.127 1.148 1.0857 1.1160
âXY (Å-1) 1.301b 1.9226 1.4771 1.9811

a This value is increased by 10% for the final surface.b This value
is changed to 1.501 for the final surface.

Table 4. Parameters Adjusted To Give a Realistic Energy Profile
along the Reaction Path

(1) (2)

HA HD AD HA HD AD

DXY 269.77 108.30 26.30 238.22 101.42 7.402
âXY 1.501 1.923 0.675 1.4471 1.9811 0.3390
·XY 0.02231 -0.01449 0.0 -0.02451 0.02063 0.0

VL ) QHD + QHA + QAD - {0.5[(JHD - JHA)2 + (JHA - JAD)2 +

(JAD - JHD)2]}1/2 (6)

QXY ) 0.5[V-(rXY) + V+(rXY)] (7)

JXY ) 0.5[V+(rXY) - V- (rXY)] (8)

V-(rXY) ) DXY{exp[-2âXY(rXY - re,XY)] - 2 exp[-âXY(rXY -
re,XY)]} (9)

V+(rXY) ) 0.5
1 - ZXY

1 + ZXY
DXY{exp[-2âXY(rXY - re,XY)] +

2 exp[-âXY(rXY - re,XY)]} (10)

NMN+ + PhCH2O
- f NMNH + PhCHO (R1)
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